Bedeutung für die Schule

Generative ML-Systeme wie ChatGPT & Co. sind in verschiedener Hinsicht relevant für die Schule:. Grundsätzlich lassen sich bei generativen ML-Systemen wie üblich bei Teilaspekten des Digitalen in der Schule drei Themenfelder unterscheiden:

  1. Generative ML-Systeme als Thema im Unterricht
  2. Generative ML-Systeme als Werkzeuge/Medien im Unterricht
  3. Veränderungen von Schule durch generative ML-Systeme

Bei den ersten beiden Aspekten stellen sich Fragen, die bald nach Antworten verlangen, aber auch einfacher zu beantworten sind. Deutlich schwieriger sind die Fragen beim dritten Aspekt zu beantworten.

Generative ML-Systeme als Thema im Unterricht
Medien­kompetenz Die Bedeutung von Medienkompetenz nimmt nochmals zu
Wenn durch generative ML-Systeme die allgemeine Informationsflut und insbesondere auch der Umfang und Perfektionsgrad von Fakenews nochmals um eine Grössenordnung zunimmt, so nimmt auch die Bedeutung von Medienkompetenz zu, die unter anderem künftig auch das Erkennen und den Umgang mit computergenerierten Texten umfassen muss.
mehr...
Information literacy Umgang mit generativen ML-Systemen als Teil von information literacy
Wenn generative ML-Systeme ein wichtiges Instrument der Recherche werden und bis zu einem gewissen Grad "traditionelle" Suchmaschinen ersetzen oder mindestens ergänzen werden, so muss der Umgang mit generativen ML-Systemen Teil der Allgemeinbildung werden.
Unterrichts­thema Generative ML-Systeme als mehrperspektivisches Thema in der Schule
Das Verständnis und die kompetente Nutzung von generativen ML-Systemen gehört künftig zur Allgemeinbildung. Dabei reicht - wie auch bei bisherigen (digitalen) Werkzeugen und Medien - eine reine Anwendungskompetenz nicht. Schülerinnen und Schüler sollten das Thema aus den drei Dagstuhl-Perspektiven betrachtet haben.
mehr...
Generative ML-Systeme als Werkzeug / Medium für die Schule
Lehr- / Lernunter­stützung Potenziale für Materialerstellung und Rückmeldungen an Schülerinnen und Schüler
Grundsätzlich bieten generative ML-Systeme das Potenzial, personalisiertes Unterrichtsmaterial und (individuelle) Rückmeldungen an Schülerinnen und Schüler generieren zu lassen. Es ist aber noch nicht geklärt, wie didaktisch passend sich solche Texte generieren lassen und welche evtl. unerwünschten Nebenwirkungen sich ergeben können, wenn Computersysteme gewisse Aufgaben übernehmen, die bisher von Lehrpersonen geleistet worden sind.
(Entsprechende Forschungen und Projekte sind oft unter den Stichworten Intelligent tutoring system (ITS), learning analytics oder Adaptivität zu finden.)
mehr...
Datenschutz Aktuelle generative ML-Systeme sind derzeit aus Kapazitätsründen meist auf externen Servern verfügbar. Damit stellen sich die üblichen Datenschutzprobleme für Schulen: Ist es zulässig, dass schützenswerte Daten von Lehrkräften und meist minderjährigen Schüler:innen auf Servern von kommerziellen Anbietern im Ausland verarbeitet werden?
mehr...
Integration / Verbot Detailfragen der Integration versus des Verbots von generativen ML-Systemen in spezifischen Unterrichtssituationen
Ähnlich wie beim Taschenrechner wird sich künftig auch bei generativen ML-Systemen die Frage stellen, in welchen Unterrichtssituationen aus welchen didaktischen Gründen die Verwendung von generativen ML-Systemen erlaubt bzw. verboten sein wird.
mehr...
Betrug Gewisse Prüfungsformate sind künftig anfällig für Betrug
Schriftliche Hausaufgaben und Prüfungen am Computer ohne entsprechende Aufsicht und/oder Gegenmassnahmen können künftig vermehrt mit Hilfe von generativen ML-Systemen gelöst werden. Entsprechender Betrug ist immer schwieriger zu erkennen und noch schwieriger juristisch zweifelsfrei belegbar. Gegenmassnahmen erfordern entweder mehr Ressourcen (mündliche Prüfungen, engere Betreuung von Hausarbeiten, Prozessportfolios) oder aber die Rückkehr zu papierbasierten Präsenzprüfungen.
mehr...
Veränderungen von Schule durch generative ML-Systeme
Steigendes Anspruchs­niveau Weitere Zunahme des kognitiven Anspruchsniveaus
Mit der Verfügbarkeit von generativen ML-Systemen steigt das kognitive Anspruchsniveau für das berufliche und gesellschaftliche Leben weiter. Wenn auch geistige Routinetätigkeiten zunehmend automatisiert werden können, sind Menschen einerseits mit den Produkten dieser automatisierten Prozesse konfrontiert und müssen sich andererseits mit den sich ergebenden noch komplexeren Herausforderungen beschäftigen. Für gewisse Schülerinnen und Schüler und damit für das Bildungssystem könnte dies problematisch werden.
Kompetenz­schere Sich weiter öffnende Kompetenzschere?
Im Zuge der bisherigen Digitalisierung hat sich gezeigt, dass gute Schülerinnen und Schüler neue (digitale) Werkzeuge und Medien besser zu ihrem eigenen Nutzen einsetzen können als schlechtere Schüler:innen. Dies hat bereits in der Vergangenheit zu einer Vergrösserung des Leistungsspektrums geführt. Dies dürfte bei generativen ML-Systemen nicht anders sein und damit die Leistungsheterogenität weiter erhöhen.
mehr...
Motivations­probleme Motivationsprobleme aufgrund verfügbarer Automatisierung?
Bisher nicht geklärt ist die Frage, ob sich aufgrund der Verfügbarkeit von automatisierter Texterstellung und Textübersetzung Motivationsprobleme bei Schülerinnen und Schülern ergeben, weil diese keinen Sinn darin sehen, eine Kompetenz zu erlernen, die bereits automatisiert verfügbar ist. (Es handelt sich in einem gewissen Sinn um eine ähnliche Diskussion, wie sie bereits mit dem Kopfrechnen seit der Verfügbarkeit von Taschenrechnern stattgefunden hat.) (Mehr dazu unter Warum soll ich lernen, was die Maschine (besser) kann?.)
PHSZ Logo

Die Website gmls.phsz.ch ist eine seit Dezember 2022 laufend erweiterte Sammlung von Einordnungen der Professur "Digitalisierung und Bildung" der Pädagogischen Hochschule Schwyz zur Frage, welche Auswirkungen generative Machine-Learning-Systeme wie ChatGPT auf die Schule haben.

Lizenz: Die Website steht unter einer CC-BY-ND-Lizenz, Bilder und Texte dürfen somit unter Quellenangabe an anderen Orten verwendet werden.

Zitationsvorschlag: Döbeli Honegger, Beat (2023). ChatGPT & Co. und Schule. Einschätzungen der Professur "Digitalisierung und Bildung" der Pädagogischen Hochschule Schwyz. https://gmls.phsz.ch/ (abgerufen am 21 Nov 2024)